ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
C. E. Willingham, M. R. Killgore
Nuclear Science and Engineering | Volume 103 | Number 3 | November 1989 | Pages 313-319
Technical Paper | doi.org/10.13182/NSE89-A23683
Articles are hosted by Taylor and Francis Online.
Power reactor benchmark calculations using the advanced code package CASMO-3/SIMULA TE-3 have been performed for six cycles of Prairie Island Unit 1. The reload fuel designs for the selected cycles include gadolinia as a burnable absorber, natural uranium axial blankets, and increased water-to-fuel ratio. The calculated results for both low-power physics tests (boron end points, control rod worths, and isothermal temperature coefficients) and full-power operation (power distributions and boron letdown) are compared to measured plant data. These comparisons show that the TU Electric reactor physics models accurately predict important physics parameters for power reactors.