ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
M. S. Kazimi
Nuclear Science and Engineering | Volume 103 | Number 1 | September 1989 | Pages 59-69
Technical Paper | doi.org/10.13182/NSE89-A23660
Articles are hosted by Taylor and Francis Online.
An assessment is presented for the thermal attack on the MARK-I boiling water reactor steel containment shell by core melt materials ejected from the vessel in a severe accident. The cooling of the core melt as it spreads and transfers heat to the concrete floor of the drywell is evaluated. It is found that the melt temperature may reach the freezing point before the melt contacts the shell, particularly if the melt was mostly oxidic or was ejected at moderate rates. The heat fluxes from the melt to the liner that can be withstood are evaluated, with and without a pool of water overlying the melt. With water above the melt, if the superheat in a mostly metallic melt is moderate to allow for the formation of a crust at the interface with the shell, the shell may survive the attack by a shallow melt layer (up to 10 cm deep). The potential for survival is much better if the melt was composed mostly of oxidic materials.