ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Koji Oishi, Yujiro Ikeda, Hiroshi Maekawa, Tomoo Nakamura
Nuclear Science and Engineering | Volume 103 | Number 1 | September 1989 | Pages 46-58
Technical Paper | doi.org/10.13182/NSE89-A23659
Articles are hosted by Taylor and Francis Online.
The neutron spectra in a concrete assembly bombarded by 14-MeV neutrons are measured by a miniature NE-213 spectrometer and the multifoil activation method. The results obtained are within experimental error. The measured spectra are compared with calculated results obtained using the two-dimensional DOT3.5 transport code with 125-group structure cross-section libraries based on ENDF/B—IV, JENDL-2, and JENDL-3T (the test version of JENDL-3). In the deuterium-tritium neutron peak region, the measured and calculated neutron spectra are in agreement. However, all the calculations overestimate the measurements by 10 to 50% in the mega-electron-volt region. In a still lower neutron energy range, where the 197Au(n,γ)198Au reaction is dominant, discrepancies from −30 to +40% are observed. Possible reasons are considered, but none explain the discrepancies. Further investigation of the secondary neutrons in the mega-electron-volt region emitted by elastic and inelastic scattering from the main components of concrete, such as oxygen, silicon, and calcium, is necessary to improve the agreement between experimental and calculated results.