ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
R. N. Hill, K. O. Ott
Nuclear Science and Engineering | Volume 103 | Number 1 | September 1989 | Pages 12-24
Technical Paper | doi.org/10.13182/NSE89-A23656
Articles are hosted by Taylor and Francis Online.
A review of worldwide results reveals that reaction rates in the blanket region are generally underpredicted with the discrepancy increasing with penetration; however, these results vary widely. Experiments in the large uniform Purdue University Fast Breeder Blanket Facility blanket yield an accurate quantification of this discrepancy. Using standard production code methods (diffusion theory with 50-group cross sections), a consistent calculated-to-experimental (C/E) drop-off is observed for various reaction rates. A 50% increase in the calculated results at the outer edge of the 51-cm blanket is necessary for agreement with experiments. The usefulness of refined group constant generation, utilizing specialized weighting spectra, and transport theory methods in correcting this discrepancy is analyzed. Refined group constants reduce the discrepancy to half that observed using the standard method. The surprising result is that transport methods have no effect on the blanket deviations; thus, the present multigroup transport theory does not constitute or even contribute to an explanation of the blanket discrepancies. The residual blanket C/E drop-off (about half the standard drop-off) using advanced methods must be caused by approximations that are applied in all current multigroup methods.