ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. N. Hill, K. O. Ott
Nuclear Science and Engineering | Volume 103 | Number 1 | September 1989 | Pages 12-24
Technical Paper | doi.org/10.13182/NSE89-A23656
Articles are hosted by Taylor and Francis Online.
A review of worldwide results reveals that reaction rates in the blanket region are generally underpredicted with the discrepancy increasing with penetration; however, these results vary widely. Experiments in the large uniform Purdue University Fast Breeder Blanket Facility blanket yield an accurate quantification of this discrepancy. Using standard production code methods (diffusion theory with 50-group cross sections), a consistent calculated-to-experimental (C/E) drop-off is observed for various reaction rates. A 50% increase in the calculated results at the outer edge of the 51-cm blanket is necessary for agreement with experiments. The usefulness of refined group constant generation, utilizing specialized weighting spectra, and transport theory methods in correcting this discrepancy is analyzed. Refined group constants reduce the discrepancy to half that observed using the standard method. The surprising result is that transport methods have no effect on the blanket deviations; thus, the present multigroup transport theory does not constitute or even contribute to an explanation of the blanket discrepancies. The residual blanket C/E drop-off (about half the standard drop-off) using advanced methods must be caused by approximations that are applied in all current multigroup methods.