ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Keisuke Okumura, Kojiro Nishina
Nuclear Science and Engineering | Volume 102 | Number 4 | August 1989 | Pages 381-390
Technical Paper | doi.org/10.13182/NSE89-A23649
Articles are hosted by Taylor and Francis Online.
By cell calculation with the SRAC code system, void reactivity is evaluated for a high conversion light water reactor tight lattice, with an emphasis on the breakdown of the void effect into component nuclides, nuclear reactions, and energy groups. The analysis is restricted to infinite lattices and deals with the consequence of neutron energy spectrum shifts caused by void.In a preliminary parameter survey over various fissile plutonium enrichments, a 7.5 % enrichment is found approximately to border the negative and the positive coefficients, when the moderator channel volume to fuel volume Vm/Vf is fixed at a typical value of 0.53. With this combination of the enrichment and Vm/Vf values fixed, the reactivity effect for an incremental void increase is analyzed in detail at low-void conditions (0 to 10%) and at high-void conditions (95 to 100%).At low-void conditions, the 238U contribution is negative by the capture increase in the kilo-electron-volt range, whereas the 240Pu and 242Pu contributions proved to be positive by the capture decrease in the 0.1- to 10-eV range. At high-void conditions, on the other hand, 239Pu makes a positive contribution, originating from (a) the fission increase in the 50-eV to 1-MeV range dominating over the fission decrease in the 10- to 50-eV range, and (b) the lower capture-to-fission ratio above 10 keV. Such a positive contribution of 239Pu is in contrast to the negative contribution of 235U in a highly voided pressurized water reactor lattice. Americium-241 generated by the decay of 241 Pu makes a positive contribution in both low- and high-void conditions. The breakdown of the void effect clearly illustrates the physical mechanism.