ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
Toshimasa Miura
Nuclear Science and Engineering | Volume 102 | Number 2 | June 1989 | Pages 191-209
Technical Paper | doi.org/10.13182/NSE89-A23643
Articles are hosted by Taylor and Francis Online.
Empirical formulas are derived that describe neutron flux distributions in straight and bent cylindrical steel-walled ducts in symmetrical and asymmetrical geometries. Asymmetry is defined by the slant angle between the duct axis and a line passing through the center of the duct mouth and source. Streaming neutrons are divided into direct, albedo, and penetration components. The first two components are described by a function of the axial distance in units of the square root of the line-of-sight area. The last component is described by a function of the neutron flux distribution in the shield in the absence of the duct. Formulas are applicable to thermal, epithermal, intermediate, and fast neutrons, respectively, in the following range: (a) duct diameter is 5 to 20 cm, (b) duct length is up to 240 cm, (c) slant angle is 0 to 90 deg, (d) steel wall thickness is 0 to 1.0 cm, (e) bent angle is 45 to 90 deg, and (f) surrounding medium of the duct is water or ordinary concrete. Calculations by formulas agree with experimental data, in general, within an accuracy of ±30%.