ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
No impact from Savannah River radioactive wasps
The news is abuzz with recent news stories about four radioactive wasp nests found at the Department of Energy’s Savannah River Site in South Carolina. The site has been undergoing cleanup operations since the 1990s related to the production of plutonium and tritium for defense purposes during the Cold War. Cleanup activities are expected to continue into the 2060s.
Toshimasa Miura
Nuclear Science and Engineering | Volume 102 | Number 2 | June 1989 | Pages 191-209
Technical Paper | doi.org/10.13182/NSE89-A23643
Articles are hosted by Taylor and Francis Online.
Empirical formulas are derived that describe neutron flux distributions in straight and bent cylindrical steel-walled ducts in symmetrical and asymmetrical geometries. Asymmetry is defined by the slant angle between the duct axis and a line passing through the center of the duct mouth and source. Streaming neutrons are divided into direct, albedo, and penetration components. The first two components are described by a function of the axial distance in units of the square root of the line-of-sight area. The last component is described by a function of the neutron flux distribution in the shield in the absence of the duct. Formulas are applicable to thermal, epithermal, intermediate, and fast neutrons, respectively, in the following range: (a) duct diameter is 5 to 20 cm, (b) duct length is up to 240 cm, (c) slant angle is 0 to 90 deg, (d) steel wall thickness is 0 to 1.0 cm, (e) bent angle is 45 to 90 deg, and (f) surrounding medium of the duct is water or ordinary concrete. Calculations by formulas agree with experimental data, in general, within an accuracy of ±30%.