ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Chaung Lin, Zhih Pao Lin, Wern Jiahn Jiang
Nuclear Science and Engineering | Volume 102 | Number 2 | June 1989 | Pages 134-139
Technical Paper | doi.org/10.13182/NSE89-A23638
Articles are hosted by Taylor and Francis Online.
A method based on a forward dynamic programming technique is applied to load-following control of a boiling water reactor. The control strategy obtained is optimal and satisfies operation constraints. A coarse-mesh, one-dimensional model using the two-group diffusion theory with Doppler, void, and xenon feedbacks is developed to reduce computer time. The control rods are assumed to be fixed during load maneuvers, and variations in core power are accomplished through core flow. An off-line daily load-following analysis needs ∼2000 CPU s on a PRIME 9950 computer. With some relaxation, computation time can be reduced to several hundred seconds. Thus, an on-line calculation that leads to an approximate closed-loop control is feasible.