ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
R. L. Walsh
Nuclear Science and Engineering | Volume 102 | Number 2 | June 1989 | Pages 119-133
Technical Paper | doi.org/10.13182/NSE89-A23637
Articles are hosted by Taylor and Francis Online.
Calculations of fission neutron spectra and fission spectrum integrals for six fissioning systems are reported. The systems studied are thermal-neutron-induced fission of 233U, 235U, and 239Pu; 2-MeV neutron fission of 232Th and 238U; and spontaneous fission of 252Cf The Madland-Nix formalism is used, but is extended to take account of the spin of the fission fragment. Also, more recent values for the average energy release in fission are used. The results of the fission neutron spectrum calculations are given in tabular and graphical form for applied purposes and are compared with experimental data. Similar deviations from a Maxwellian spectrum are seen for each system. The effect on the fission neutron spectra of 233U, 235U, and 239Pu from inclusion of alternative values for the average total fragment kinetic energy is shown.