ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Z. Wang, K. Almenas
Nuclear Science and Engineering | Volume 102 | Number 1 | May 1989 | Pages 101-113
Technical Paper | doi.org/10.13182/NSE89-A23634
Articles are hosted by Taylor and Francis Online.
A methodology is developed to assess distortions generated by scaling laws. This requires distinction between distortions inherent in a given scaling scheme [scaling law distortions (SLDs)] and the actual distortions (ADs) existing between prototypical behavior and the transposed behavior of a model. To develop the methodology, additional scaling concepts including “reference” and “resultant” similarity parameters and “required” and “assumed”’ conditions are defined. These parameters distinguish between conditions that are directly controllable and thus can be unequivocally determined by a scaling procedure and those that must rely to varying degrees on implied assumptions. In an illustrative example, it is shown that assessments of alternate scaling schemes can produce different conclusions when based on the results of an AD analysis as compared to an analysis of SLDs alone. The RELAP5 code is used to evaluate both prototypical and model behavior.