ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
T. G. Theofanous, J. L. La Chance, K. A. Williams
Nuclear Science and Engineering | Volume 102 | Number 1 | May 1989 | Pages 74-100
Technical Paper | doi.org/10.13182/NSE89-A23633
Articles are hosted by Taylor and Francis Online.
The U.S. Nuclear Regulatory Commission pressurized thermal shock (PTS) study had previously identified small-break loss-of-coolant accidents (SBLOCAs) as a risk dominant accident scenario due to (numerically calculated) primary loop flow stagnation at high pressure. The objectives of the present effort were twofold: first, to develop a physically based understanding of controlling thermal-hydraulic phenomena producing such PTS SBLOCA stagnation scenarios and second, to use these insights in developing a simple (computationally efficient) “mapping” tool to quantify the occurrence and thermal behavior of such high-pressure flow stagnation regimes. Review of the previous [transient reactor analysis code (TRAC)] calculations revealed that inaccurate modeling of vapor condensation erroneously produced the flow stagnation and hence overly conservative (rapid) vessel cooldown rates. Using a corrected version of this code, our new calculations now exhibit flow circulation. However, parametric analysis of less likely (more equipment failure—power-operated relief valves/ high-pressure injection pumps) scenarios revealed that flow stagnation was indeed possible but could only occur at lower pressures. This simple mapping procedure has been favorably benchmarked against the (TRAC) system calculations. This tool is therefore useful for screening possible risk dominant SBLOCA scenarios in various pressurized water reactor designs.