ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Allen Barnett, J. E. Morel, D. R. Harris
Nuclear Science and Engineering | Volume 102 | Number 1 | May 1989 | Pages 1-21
Technical Paper | doi.org/10.13182/NSE89-A23628
Articles are hosted by Taylor and Francis Online.
A multigrid acceleration scheme for the one-dimensional slab geometry SN equations with anisotropic scattering and linear discontinuous spatial differencing is developed. The high-frequency relaxation iteration consists of three steps: a standard source iteration, independent two-cell block inversions centered about each spatial cell edge, and an averaging of the iterates from the previous two steps. Because the linear discontinuous differencing scheme is a finite element method, fine-to-coarse projection and coarse-to-fine interpolation are straightforward. Although standard linear discontinuous differencing is derived under the assumption of spatially constant cross sections within each cell, the scheme is generalized to allow for a linear spatial variation of the cross section in each cell. This linear variation is required to obtain accurate coarse-grid equations when homogenizing two fine-grid cells with different cross sections into a single coarse-grid cell. This multigrid method is very effective in terms of the spectral radius of the total iteration process, but the computational cost of the block inversions in the second step of the high-frequency relaxation is quite high. However, in optically thick problems with highly anisotropic scattering, this multigrid method is more economical than diffusion synthetic acceleration. Because the block inversions are independent for each cell edge, parallel processing might significantly reduce the cost of the scheme.