ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
K. V. Subbaiah, A. Natarajan, D. V. Gopinath
Nuclear Science and Engineering | Volume 101 | Number 4 | April 1989 | Pages 352-370
Technical Paper | doi.org/10.13182/NSE89-A23624
Articles are hosted by Taylor and Francis Online.
Modifications to the computational scheme of the existing slab geometry gamma-ray transport code ASFIT are introduced to facilitate the inclusion of coherent scattering contributions. The revised code is tested with two model problems and subsequently is used to investigate quantitatively the transport effects of coherent scattering as a function of the incident photon energy and the atomic number Z of the medium. The shield materials studied in this respect are beryllium, aluminum, iron, molybdenum, tin, tungsten, lead, and uranium, and the incident photon energies range between 0.015 and 0.3 MeV. The system studied is a 48-mfp-thick slab, embedding a thin strip of isotropic source located 4 mfp from the left boundary. Plane parallel incident fluxes have also been studied in certain instances. The results of the computation are presented in the form of scattered flux spectra and dose rates, both at several depths inside the media. Tables of point isotropic source buildup factors including coherent scattering are also presented. It is observed that the addition of coherent scattering does not alter the shape of the flux spectrum significantly, but changes only the magnitude. Except for a small distance near the source, these changes in flux and hence dose are downward at all depths, becoming appreciable at large depths. Furthermore, the magnitude of the reduction varies essentially according to the ratio of the coherent scattering to the total cross section (ΣR/Σt)