ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Yoshiro Asahi, Tadashi Watanabe
Nuclear Science and Engineering | Volume 101 | Number 3 | March 1989 | Pages 226-242
Technical Paper | doi.org/10.13182/NSE89-A23611
Articles are hosted by Taylor and Francis Online.
A change in the atomic number density of an element may induce a shift in the neutron spectrum, resulting in a change in all the group constants in a multigroup representation. This is referred to as the spectral shift effect. The arbitrariness inherent in the concept of reactivity is investigated by taking the spectral shift effect into account. To this end, the reactor period of a transient resulting from a spectral shift is investigated, using first-order perturbation theory. It is then shown that the result leads to a new choice for the shape function in the general formulation of the reactor dynamical parameters such as reactivity. Using a new scheme, numerical calculations are made for RBMK-1000 and light water reactors (LWRs). It is found that for LWRs the void coefficient is always negative, while for RBMK-1000 it tends to be positive as the burnup proceeds.