ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
D. Ferenc, B. Antolković, G. Paić, M. Zadro, S. Blagus
Nuclear Science and Engineering | Volume 101 | Number 1 | January 1989 | Pages 1-7
Technical Paper | doi.org/10.13182/NSE89-A23590
Articles are hosted by Taylor and Francis Online.
A metallic 9Be target was bombarded with 14.6-MeV neutrons. Double-differential cross sections were measured for the (n, α) reaction in the angular range from 0 to 100 deg. The measured alpha-particle spectra and complementary neutron spectra from the literature were analyzed in terms of a combination of sequential and simultaneous breakups. The results show that ∼50% of the total inelastic cross section is due to simultaneous breakup n + 9Be → n + α + 5He, while the remainder is mainly due to neutron inelastic scattering to the three excited states of 9Be: 2.43, 6.76, and 11.28 MeV. This analysis gives evidence of the validity of the constant matrix element model and contradicts evaluations that ignore the simultaneous breakup contributions.