ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
H. P. Planchon, G. H. Golden, J. I. Sackett, D. Mohr, L. K. Chang, E. E. Feldman, P. R. Betten
Nuclear Science and Engineering | Volume 100 | Number 4 | December 1988 | Pages 549-557
Technical Paper | doi.org/10.13182/NSE100-549
Articles are hosted by Taylor and Francis Online.
Two milestone tests were conducted in the Experimental Breeder Reactor II (EBR-II), demonstrating some of the inherent safety features of a liquid-metal reactor. The first test was a loss of flow without scram and the second was a loss of heat sink without scram. Both tests were initiated from 100% power, and in both tests the reactor was shut down passively-by natural processes, principally thermal expansion—without automatic scram, operator intervention, or the help of special incore devices. The temperature transients during the tests were mild, as predicted, and there was no damage to the core or reactor plant structures. The tests plus analysis demonstrated the feasibility of inherent passive shutdown for undercooling accidents and identified the more important features necessary for inherent shutdown and passive cooling. The results provide a technical basis for future experiments in EBR-II to investigate inherent safety for transient overpower accidents and to provide additional data for validation of computer codes used for design and safety analysis of inherently safe reactor plants.