ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Toshikazu Takeda, Hironobu Unesaki, Tamotsu Sekiya, Keisho Shirakata
Nuclear Science and Engineering | Volume 100 | Number 4 | December 1988 | Pages 538-548
Technical Paper | doi.org/10.13182/NSE88-A23586
Articles are hosted by Taylor and Francis Online.
To solve the problems encountered in the analysis of the large homogeneous and heterogeneous fast critical assemblies, Zero-Power Plutonium Reactor (ZPPR) 9, 10, and 13, we have revisited the analysis using improved methods. Two-dimensional cell calculations, cell calculations using multidrawer cell models, and three-dimensional transport theory core calculations were introduced. Using these methods, the discrepancies in the calculation-to-experiment (C/E) values of keff for the fast critical assemblies was reduced. The use of the multidrawer model reduced the C/E spatial dependency of the control rod worths in the ZPPR-10 cores. To investigate the remaining problems of the spatial dependence of the C/E values of reaction rate distribution and control rod worth, we have adjusted a cross-section set obtained from the JENDL-2 library using the integral experiments. The cross-section changes, particularly for the diffusion coefficient, 238U scattering and capture, and 239Pu fission cross sections, have corrected the spatial dependence, as well as the overestimation of the 238U capture to 239Pu fission rate ratio and sodium void worth.