ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Gregory D. Wyss, Roy A. Axford
Nuclear Science and Engineering | Volume 100 | Number 4 | December 1988 | Pages 458-466
Technical Paper | doi.org/10.13182/NSE88-A23579
Articles are hosted by Taylor and Francis Online.
Physically realistic step function control rod models are shown to be unsolvable under traditional formulations of distributed parameter optimal control theory. Extensions to the theory are proposed and derived to allow these systems to be analyzed using straightforward optimality conditions. The extended theory is then applied to a xenon-iodine oscillation problem in two dimensions. The conditions of optimality are found, and analytical insights concerning the importance of the control rod tip for the optimality condition are obtained. The flux influence function is found by solving an eigenvalue problem, and the required normalization condition is found in one of the optimality conditions. The optimality and normalization conditions are solved numerically for a severe xenon transient, and the transient is stabilized by the intervention of the optimal control.