ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
A. Charlier, M. Doucet, C. Vandenberg, W. de Roovere, J. Bens
Nuclear Science and Engineering | Volume 100 | Number 4 | December 1988 | Pages 451-457
Technical Paper | doi.org/10.13182/NSE88-A23578
Articles are hosted by Taylor and Francis Online.
For optimal operation of a power plant, it is now necessary to install an expert system in the control room, particularly to aid the operator in predicting, following, and explaining operating events. The three-dimensional MICROLUX code, foreseen for such a system, was tested on an operating event occurring in the Doel-3 reactor. After an ≈6-h scram, the return to full power (PN) was limited at 15% PN because of an unacceptable axial offset deviation, which was believed to have been caused by xenon buildup during the shutdown. The reactor was then required to be operated at reduced power for 18 h before again reaching nominal power. From the study, however, it seems that there was no danger in returning directly to full power in spite of the ex-core indications. The three-dimensional calculations and the ex-core results show that there is a need to investigate the ex-core/in-core relationship when the reactor is operated outside the calibration field. These preliminary results indicate that the axial offset concept should be analyzed on the basis of a large number of transient operating conditions with the help of three-dimensional methods, which give a better description of the core behavior during transients. The use of such methods could contribute to a safer and more economical operation of the reactor.