ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
No impact from Savannah River radioactive wasps
The news is abuzz with recent news stories about four radioactive wasp nests found at the Department of Energy’s Savannah River Site in South Carolina. The site has been undergoing cleanup operations since the 1990s related to the production of plutonium and tritium for defense purposes during the Cold War. Cleanup activities are expected to continue into the 2060s.
Won Sik Yang, Thomas J. Downar
Nuclear Science and Engineering | Volume 99 | Number 4 | August 1988 | Pages 353-366
Technical Paper | doi.org/10.13182/NSE99-353
Articles are hosted by Taylor and Francis Online.
The generalized perturbation theory was developed to accommodate constant power core depletion. The resulting adjoint equations are distinguished from the corresponding constant flux depletion system by the coupling of adjacent time intervals in the source of the generalized adjoint flux equation. The method is demonstrated first with an analytic solution to an infinite medium problem. A system of numerical equations is then formulated to be consistent with the number density iteration scheme used to simulate constant power depletion in the code REBUS at Argonne National Laboratory. A two-dimensional (R-Z) fast reactor example similar to that used by previous authors for constant flux depletion is solved here to provide a consistent basis for evaluating the present work. The sensitivity coefficients predicted by constant power depletion perturbation theory are consistently within a few percent of the exact calculation.