ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Won Sik Yang, Thomas J. Downar
Nuclear Science and Engineering | Volume 99 | Number 4 | August 1988 | Pages 353-366
Technical Paper | doi.org/10.13182/NSE99-353
Articles are hosted by Taylor and Francis Online.
The generalized perturbation theory was developed to accommodate constant power core depletion. The resulting adjoint equations are distinguished from the corresponding constant flux depletion system by the coupling of adjacent time intervals in the source of the generalized adjoint flux equation. The method is demonstrated first with an analytic solution to an infinite medium problem. A system of numerical equations is then formulated to be consistent with the number density iteration scheme used to simulate constant power depletion in the code REBUS at Argonne National Laboratory. A two-dimensional (R-Z) fast reactor example similar to that used by previous authors for constant flux depletion is solved here to provide a consistent basis for evaluating the present work. The sensitivity coefficients predicted by constant power depletion perturbation theory are consistently within a few percent of the exact calculation.