ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
I. Pázsit, O. Glöckler+
Nuclear Science and Engineering | Volume 99 | Number 4 | August 1988 | Pages 313-328
Technical Paper | doi.org/10.13182/NSE88-A23561
Articles are hosted by Taylor and Francis Online.
In the first two papers of this series, a complete algorithm was elaborated and tested for the diagnostics of vibrating control rods in pressurized water reactors (PWRs). Although the method was thoroughly tested in numerical experiments where even the effects of background noise were accounted for, the influence of the several approximations regarding the underlying neutron physical and mechanical model of the applicability of the method in real applications could not be properly estimated. In August 1985, in-core self-powered neutron detector spectra taken at Paks-2, a PWR in Hungary, indicated the presence of an excessively vibrating control rod. With these measured noise data as input, the previously reported localization algorithm was applied in its original form. The algorithm singled out one control rod out of the possible seven, and independent investigations performed before and during the subsequent refueling showed the correctness of the localization results. It is therefore concluded that, at least in this particular application, the approximations used in the model were allowable in a case of practical interest. The algorithm was developed further to facilitate the automatization and reliability of the localization procedure. These developments and the experiences in the application of the algorithm are reported in this paper.