ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
I. Pázsit, O. Glöckler+
Nuclear Science and Engineering | Volume 99 | Number 4 | August 1988 | Pages 313-328
Technical Paper | doi.org/10.13182/NSE88-A23561
Articles are hosted by Taylor and Francis Online.
In the first two papers of this series, a complete algorithm was elaborated and tested for the diagnostics of vibrating control rods in pressurized water reactors (PWRs). Although the method was thoroughly tested in numerical experiments where even the effects of background noise were accounted for, the influence of the several approximations regarding the underlying neutron physical and mechanical model of the applicability of the method in real applications could not be properly estimated. In August 1985, in-core self-powered neutron detector spectra taken at Paks-2, a PWR in Hungary, indicated the presence of an excessively vibrating control rod. With these measured noise data as input, the previously reported localization algorithm was applied in its original form. The algorithm singled out one control rod out of the possible seven, and independent investigations performed before and during the subsequent refueling showed the correctness of the localization results. It is therefore concluded that, at least in this particular application, the approximations used in the model were allowable in a case of practical interest. The algorithm was developed further to facilitate the automatization and reliability of the localization procedure. These developments and the experiences in the application of the algorithm are reported in this paper.