ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. Fan, J. Rong, H. Zhang, Z. Zhao
Nuclear Science and Engineering | Volume 144 | Number 3 | July 2003 | Pages 219-226
Technical Paper | doi.org/10.13182/NSE03-A2355
Articles are hosted by Taylor and Francis Online.
The formation cross section of the nuclide production of proton-induced reactions with intermediate energy is important for a variety of applications. For instance, the mass and charge distribution of residual products produced in the spallation reactions needs to be studied because it can provide useful information for the disposal of nuclear waste and residual radioactivity generated by the spallation neutron target system. With our current work, we have developed the Many Stage Dynamical Model (MSDM) based on the Cascade-Exciton Model (CEM). By introducing Mshnik's recent work on the CEM code, the MSDM code and the Quantum Molecular Dynamics (QMD) plus Statistical Decay Model (SDM) (QMD+SDM) and QMD plus FISSION (QMD+FISSION) models are adopted; we use them to investigate the mass distribution of Nb, Au, and Pb of proton-induced reactions with energies from 100 MeV to 3 GeV. The agreement between the developed MSDM simulations and the measured data as well as the QMD+FISSION model are good in the energy range of 100 MeV to 3 GeV, and deviations mainly show up in the mass range of 90 to 140 in the high energy of protons incident on the Au and Pb target for the MSDM and QMD+FISSION model simulations. The QMD+SDM can reproduce only part of the spallation fragments and cannot reproduce the fission fragments of the measured data.