ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Karl O. Ott
Nuclear Science and Engineering | Volume 99 | Number 1 | May 1988 | Pages 13-27
Technical Paper | doi.org/10.13182/NSE88-A23541
Articles are hosted by Taylor and Francis Online.
The longer term response of oxide- and metal-fueled liquid-metal-cooled reactors to unscrammed loss-of-flow and loss-of-heat-sink failures is investigated. The investigation consists of a review of numerical transient calculations performed by the Argonne National Laboratory Reactor Analysis and Safety Division, and of analytical analyses of semiasymptotic states. The emphasis is on the identification and evaluation of an inherent shutdown state for metal fuel, with its high heat conductivity, as an alternative to the familiar low-power asymptotic critical state. Design implications for retaining the inherently effected shutdown for a sufficiently long period are discussed and quantitatively evaluated. In addition, the effect of uncertainties of reactivity coefficients on predictions for such unscrammed transients is investigated. It is shown how measurements during a preoperational safety demonstration phase can validate and possibly correct those predictions.