ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
B. Kim, M. L. Corradini
Nuclear Science and Engineering | Volume 98 | Number 1 | January 1988 | Pages 16-28
Technical Paper | doi.org/10.13182/NSE88-A23522
Articles are hosted by Taylor and Francis Online.
A model for small-scale single droplet fuel/coolant interactions (FCIs) is proposed, which considers the growth of a coolant vapor/liquid interfacial disturbance into a coolant liquid jet during the collapse of the vapor film surrounding the fuel. This results in the encapsulation of the jet as coolant drops beneath the fuel surface and leads to fragmentation of the fuel. In this model, the FCI process is divided into four stages: film boiling around a molten fuel droplet in an infinite coolant pool, film collapse and coolant jet formation, coolant jet penetration and entrapment in the fuel, and rapid evaporation of entrained coolant and fragmentation of the fuel. The process repeats itself cyclically from the second stage. For the single-droplet experiments performed previously, the model predicts the qualitative trends of steam bubble growth and collapse, the final size of fuel fragments, and time scale for the fuel fragmentation.