ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
B. Kim, M. L. Corradini
Nuclear Science and Engineering | Volume 98 | Number 1 | January 1988 | Pages 16-28
Technical Paper | doi.org/10.13182/NSE88-A23522
Articles are hosted by Taylor and Francis Online.
A model for small-scale single droplet fuel/coolant interactions (FCIs) is proposed, which considers the growth of a coolant vapor/liquid interfacial disturbance into a coolant liquid jet during the collapse of the vapor film surrounding the fuel. This results in the encapsulation of the jet as coolant drops beneath the fuel surface and leads to fragmentation of the fuel. In this model, the FCI process is divided into four stages: film boiling around a molten fuel droplet in an infinite coolant pool, film collapse and coolant jet formation, coolant jet penetration and entrapment in the fuel, and rapid evaporation of entrained coolant and fragmentation of the fuel. The process repeats itself cyclically from the second stage. For the single-droplet experiments performed previously, the model predicts the qualitative trends of steam bubble growth and collapse, the final size of fuel fragments, and time scale for the fuel fragmentation.