ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. F. Young, L. T. Pong
Nuclear Science and Engineering | Volume 98 | Number 1 | January 1988 | Pages 1-15
Technical Paper | doi.org/10.13182/NSE88-A23521
Articles are hosted by Taylor and Francis Online.
During a severe nuclear plant accident, molten fuel can contact water in the core region, the lower plenum, or in the cavity below the reactor vessel. The interactions that take place can vary from benign boiling to explosive vaporization. If the fuel contains a metallic component, rapid oxidation of the metal can occur during the fuel/coolant interaction (FCI). The hydrogen generated from this reaction can increase the threat to containment integrity. Experiments have been conducted with 10 to 20 kg of two kinds of thermite-generated molten fuel simulants: corium and iron-aluminum oxide. Both saturated and subcooled water were employed as coolants. Explosive and nonexplosive FCIs were observed. Up to 30% of the metal was reacted in some cases. For some of the tests, the extent of reaction appeared to depend more on the water subcooling than on the degree of fragmentation as measured by posttest sieving. Models of hydrogen generation are proposed and compared to a broad range of experiments. Predictions agree qualitatively with many of the experimental observations. A more accurate model of hydrogen generation would have to be coupled to a dynamic thermal-hydraulic calculation of the important phases of an FCI: coarse mixing, fine fragmentation, explosion propagation, and vapor expansion.