ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Yukio Oyama, Hiroshi Maekawa
Nuclear Science and Engineering | Volume 97 | Number 3 | November 1987 | Pages 220-234
Technical Paper | doi.org/10.13182/NSE87-A23504
Articles are hosted by Taylor and Francis Online.
Angular neutron fluxes leaking from the surface of beryllium slab assemblies have been measured with irradiation of deuterium-tritium neutrons. The experiment was performed using the time-of-flight technique with an NE-213 scintillation detector. The measured neutron energy range was from 50 keV to 15 MeV. The thicknesses of the slabs were 50.8 and 152.4 mm, and the measured angles of the angular fluxes were 0.0, 12.2, 24.9, 41.8, and 66.8 deg. The experimental results have been compared with the results calculated by the Monte Carlo codes, MORSE-DD and MCNP, using the data of beryllium in the JENDL-3PR1, ENDF/B-IV, and Los Alamos National Laboratory nuclear data files. The results calculated with these files showed discrepancies of 20 to 30% from the experimental results. It was pointed out that the angular distributions of an elastic cross section and the total cross section of an inelastic reaction for 14.8-MeV neutrons in the files were insufficient to reproduce the measured spectra.