ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
V. Drüke, D. Filges, R. D. Neef, N. Paul, H. Schaal
Nuclear Science and Engineering | Volume 97 | Number 1 | September 1987 | Pages 37-52
Technical Paper | doi.org/10.13182/NSE87-A23494
Articles are hosted by Taylor and Francis Online.
Several fuel-loading concepts are proposed for high-temperature reactors of the pebble-bed type. A very promising one is the so-called OTTO (once through then out) loading scheme. Some of the intrinsic features of OTTO fuel loading are the axial nonsymmetrical power and neutron flux distribution with a pronounced maximum at the upper reactor core region. Since the neutron physics of OTTO cores will be very different from previous homogeneous fuel-loading schemes, detailed experimental and theoretical investigations of these objectives were performed at the critical facility KAHTER. Experimental and theoretical investigations have been carried out to determine critical masses, reaction rates, and control rod worths in the upper cavity and top reflector. Fast flux distributions in upper graphite reflectors were also measured to estimate graphite damage. The critical masses and keff’s are calculated using two- and three-dimensional code systems. The three-dimensional codes give keff values for the high-temperature gas-cooled reactor OTTO cores at zero burnup within a margin that is currently standard for these calculations. The agreement of measured and calculated reactivity worths of the top reflector rods is better than 2%.