ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
David D. Ebert
Nuclear Science and Engineering | Volume 55 | Number 4 | December 1974 | Pages 470-476
Technical Note | doi.org/10.13182/NSE74-A23481
Articles are hosted by Taylor and Francis Online.
The major objective of this investigation was to study the possibility of measuring dynamic characteristics of the Experimental Breeder Reactor II (EBR-II) by an analysis of the inherent fluctuations at steady state. Subsidiary objectives were to devise a means whereby detailed signature analyses could be obtained on a routine basis and to interpret these signatures. Relatively simple noise models were developed for the EBR-II which aided in the interpretation of the measured signatures. From this interpretation, it appears that it is not possible to measure the power to reactivity transfer function using inherent noise analysis with the existing EBR-II detection equipment. There exists, however, the possibility that this transfer function, and transfer functions of a similar type, may be measured if thermocouples and flowmeters of a different design and/or location are implemented. Detailed, broad frequency range signatures of two neutron detectors have been obtained at low and high power levels for one run. Also, signatures of a single neutron detector have been processed for several runs. These signatures changed in a complicated fashion from run to run.