ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
M. S. Ash, G. Yanow
Nuclear Science and Engineering | Volume 55 | Number 3 | November 1974 | Pages 342-344
Technical Note | doi.org/10.13182/NSE74-A23460
Articles are hosted by Taylor and Francis Online.
In certain atomic physics experiments performed in conjunction with underground nuclear-weapon testing, it is desired that radiation energy converter plates be irradiated so as to reemit a maximum amount of radiation. The plates, composed of thin layers of materials of differing atomic number, are to be designed by choosing the material atomic number for each layer so that the plate, in toto, produces minimum photoelectron kinetic energy. Minimum photoelectron kinetic energy implies maximum energy reradiated, in the context of the radiation energy spectral regime of interest. The optimum choice of layer atomic numbers involves the solution of a novel variational problem where the minimizing function, the atomic numbers, take on integer values only. A comparison is made between the optimally designed plate and the corresponding homogeneous plate in terms of photoelectron kinetic energy produced. The homogeneous plate produces more than two orders of magnitude more photoelectric kinetic energy than does the optimally designed plate.