ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. That's the same amount of HALEU—900 kg—that the company today announced it has delivered to the DOE, completing Phase II of its contract. According to Centrus, the contract extension, which allows the company to begin Phase III, is valued at about $110 million through June 30, 2026.
M. S. Ash, G. Yanow
Nuclear Science and Engineering | Volume 55 | Number 3 | November 1974 | Pages 342-344
Technical Note | doi.org/10.13182/NSE74-A23460
Articles are hosted by Taylor and Francis Online.
In certain atomic physics experiments performed in conjunction with underground nuclear-weapon testing, it is desired that radiation energy converter plates be irradiated so as to reemit a maximum amount of radiation. The plates, composed of thin layers of materials of differing atomic number, are to be designed by choosing the material atomic number for each layer so that the plate, in toto, produces minimum photoelectron kinetic energy. Minimum photoelectron kinetic energy implies maximum energy reradiated, in the context of the radiation energy spectral regime of interest. The optimum choice of layer atomic numbers involves the solution of a novel variational problem where the minimizing function, the atomic numbers, take on integer values only. A comparison is made between the optimally designed plate and the corresponding homogeneous plate in terms of photoelectron kinetic energy produced. The homogeneous plate produces more than two orders of magnitude more photoelectric kinetic energy than does the optimally designed plate.