ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
Dong H. Nguyen
Nuclear Science and Engineering | Volume 55 | Number 3 | November 1974 | Pages 307-319
Technical Paper | doi.org/10.13182/NSE74-A23457
Articles are hosted by Taylor and Francis Online.
Transient solutions of a nonlinear nuclear reactor with various temperature-dependent feedbacks are obtained by the modified Newton-Raphson-Kantorovich’s iterative technique. The difference between the first and higher iterates is shown explicitly to be negligible at all times, so that the first iterate represents well the entire solution. It is also shown that the spatial distribution of the neutron flux during transience is dominated by the fundamental mode and that the negligible difference between the second and the first iterates is composed of higher harmonics.—, The maximum flux, the time at which it occurs, and the rate of flux increase are all readily obtained from the solutions. For an increase in reactor buckling and for a positive initial flux disturbance, the neutron flux in a reactor with Newtonian or prompt feedback reaches a finite asymptotic value, whereas that of an adiabatic reactor first rises, then drops off. However, for the same initial conditions, the maximum flux attained in an adiabatic reactor is several fold higher than that of a reactor with Newtonian or prompt feedback.