ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
J. J. Van Binnebeek
Nuclear Science and Engineering | Volume 54 | Number 3 | July 1974 | Pages 341-352
Technical Paper | doi.org/10.13182/NSE74-A23424
Articles are hosted by Taylor and Francis Online.
Using the asymptotic transport theory and the reactor image method in a reactor lattice, the group theory is applied to develop a solid-state physics formalism, generalizing Nelkin’s theory for homogeneous media. The eigenvalues of the transport operator are shown to be classified according to the representations of the lattice symmetry group, while the corresponding flux eigenfunctions form a basis for those representations. These flux eigenfunctions have a Bloch form that can be interpreted as a factorization of the flux into a macroscopic and a microscopic shape. Finally, the transport eigenvalue problem is shown to be reduced to a unit cell eigenvalue problem for a modified transport equation, the resolution of which can be simplified by symmetry considerations in the choice of trial functions for some variational principle.