ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
J. J. Van Binnebeek
Nuclear Science and Engineering | Volume 54 | Number 3 | July 1974 | Pages 341-352
Technical Paper | doi.org/10.13182/NSE74-A23424
Articles are hosted by Taylor and Francis Online.
Using the asymptotic transport theory and the reactor image method in a reactor lattice, the group theory is applied to develop a solid-state physics formalism, generalizing Nelkin’s theory for homogeneous media. The eigenvalues of the transport operator are shown to be classified according to the representations of the lattice symmetry group, while the corresponding flux eigenfunctions form a basis for those representations. These flux eigenfunctions have a Bloch form that can be interpreted as a factorization of the flux into a macroscopic and a microscopic shape. Finally, the transport eigenvalue problem is shown to be reduced to a unit cell eigenvalue problem for a modified transport equation, the resolution of which can be simplified by symmetry considerations in the choice of trial functions for some variational principle.