ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
J. J. Van Binnebeek
Nuclear Science and Engineering | Volume 54 | Number 3 | July 1974 | Pages 341-352
Technical Paper | doi.org/10.13182/NSE74-A23424
Articles are hosted by Taylor and Francis Online.
Using the asymptotic transport theory and the reactor image method in a reactor lattice, the group theory is applied to develop a solid-state physics formalism, generalizing Nelkin’s theory for homogeneous media. The eigenvalues of the transport operator are shown to be classified according to the representations of the lattice symmetry group, while the corresponding flux eigenfunctions form a basis for those representations. These flux eigenfunctions have a Bloch form that can be interpreted as a factorization of the flux into a macroscopic and a microscopic shape. Finally, the transport eigenvalue problem is shown to be reduced to a unit cell eigenvalue problem for a modified transport equation, the resolution of which can be simplified by symmetry considerations in the choice of trial functions for some variational principle.