ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
D. M. Johnson
Nuclear Science and Engineering | Volume 54 | Number 3 | July 1974 | Pages 235-253
Technical Paper | doi.org/10.13182/NSE74-A23415
Articles are hosted by Taylor and Francis Online.
In reactor design there is a requirement for a practical and economic method of predicting gamma-ray spectra throughout bulk shields. The commonly used build-up factor technique suffers the disadvantage of not predicting primary physical quantities, and the more sophisticated transport methods require considerable computer time and expertise to be effective. In the method developed here, an order of scattering model has been used with a spatial cell scheme and an energy multigroup system, but the usual limitation of computational complexity has been overcome by an angular approximation. An equilibrium property in the behavior of the angular penetration spectra has been incorporated in an anisotropic scatter approximation which tends, in the low energy limit, to become isotropic. The code has been tested over a range of penetrations and source energies, and the results are compared with the Monte Carlo method; similar results through an interface are given. Extension of the model to more complex geometries has been considered briefly.