ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
House, Senate bills aim to improve nuclear decommissioning and waste disposal
Two bills were introduced in the last several weeks aiming to address nuclear power at the end of life—decommissioning plants and recycling used fuel.
D. M. Johnson
Nuclear Science and Engineering | Volume 54 | Number 3 | July 1974 | Pages 235-253
Technical Paper | doi.org/10.13182/NSE74-A23415
Articles are hosted by Taylor and Francis Online.
In reactor design there is a requirement for a practical and economic method of predicting gamma-ray spectra throughout bulk shields. The commonly used build-up factor technique suffers the disadvantage of not predicting primary physical quantities, and the more sophisticated transport methods require considerable computer time and expertise to be effective. In the method developed here, an order of scattering model has been used with a spatial cell scheme and an energy multigroup system, but the usual limitation of computational complexity has been overcome by an angular approximation. An equilibrium property in the behavior of the angular penetration spectra has been incorporated in an anisotropic scatter approximation which tends, in the low energy limit, to become isotropic. The code has been tested over a range of penetrations and source energies, and the results are compared with the Monte Carlo method; similar results through an interface are given. Extension of the model to more complex geometries has been considered briefly.