ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
John C. Lee
Nuclear Science and Engineering | Volume 54 | Number 2 | June 1974 | Pages 206-214
Technical Note | doi.org/10.13182/NSE74-A23410
Articles are hosted by Taylor and Francis Online.
Application of a θ-difference technique to the finite-difference solution of xenon-induced spatial transients has been made, which shows a substantial improvement in the accuracy of the calculated stability index and oscillation period. Virtually no correction is necessary for time-step lengths up to two hours, so an accurate simulation of experimental tests can be performed explicitly in the time domain with fairly crude time-step lengths. A simple expression was obtained for the optimum value of the parameter, θ, that can minimize the calculational error for a broad range of the core stability. The method is expected to be applicable for controlled xenon transients as well as for free-running oscillations.