ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
M. A. Smith, N. Tsoulfanidis, E. E. Lewis, G. Palmiotti, T. A. Taiwo
Nuclear Science and Engineering | Volume 144 | Number 1 | May 2003 | Pages 36-46
Technical Paper | doi.org/10.13182/NSE144-36
Articles are hosted by Taylor and Francis Online.
The variational nodal method is generalized by dividing each spatial node into a number of triangular finite elements designated as subelements. The finite subelement trial functions allow for explicit geometry representations within each node, thus eliminating the need for nodal homogenization. The method is implemented within the Argonne National Laboratory code VARIANT and applied to two-dimensional multigroup problems.Eigenvalue and pin-power results are presented for a four-assembly Organization for Economic Cooperation and Development/Nuclear Energy Agency benchmark problem containing enriched UO2 and mixed oxide fuel pins. Our seven-group model combines spherical or simplified spherical harmonic approximations in angle with isoparametric linear or quadratic subelement basis functions, thus eliminating the need for fuel-coolant homogenization. Comparisons with reference seven-group Monte Carlo solutions indicate that in the absence of pin-cell homogenization, high-order angular approximations are required to obtain accurate eigenvalues, while the results are substantially less sensitive to the refinement of the finite subelement grids.