ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Kanji Tasaka, Nobuo Sasamoto
Nuclear Science and Engineering | Volume 54 | Number 2 | June 1974 | Pages 177-189
Technical Paper | doi.org/10.13182/NSE74-A23405
Articles are hosted by Taylor and Francis Online.
The energy release rates of fission products have been calculated by summation of the contributions of respective fission product nuclides. An attempt is made to refine the existing values of beta- and gamma-ray energy release rates at short times after fission by including information on more fission products, mainly short-lived ones. In the calculation, 443 radioactive and 125 stable nuclides are considered. The unknown nuclear data for short-lived nuclides are estimated theoretically or statistically. The Q values are obtained by using the semiempirical mass formula of Myers and Swiatecki. The beta-decay constant, λ, of a nucleus is derived from its Q value by using the empirical correlation between λ and Q., Feasibility of the method is evaluated through comparison of the calculated results with experiment. The results are in good agreement with the experimental results for the gamma-ray energy release rates at short times after the fission; usefulness of the estimated nuclear data is thus indicated. The calculated decay powers are in good agreement with the calorimetric measurements of Day and Cannon. The present results of decay power also agree well with the compilations by Shure and by Stehn and Clancy for the respective cooling times.