ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
A. A. El-Bassioni, C. G. Poncelet
Nuclear Science and Engineering | Volume 54 | Number 2 | June 1974 | Pages 166-176
Technical Paper | doi.org/10.13182/NSE74-A23404
Articles are hosted by Taylor and Francis Online.
The theoretical minimal time modal control strategy to suppress xenon oscillations in nuclear reactors was found to be of the Bang-Bang type. Such control policy implies instantaneous variation of the control poison between two extreme values. The switching action depends on exact knowledge of the location of the reactor state in the phase plane. The state is related to the measured axial offset, and the concept of axial offset phase plane is introduced. The main features of this phase plane can be constructed using a semi-operational method. Using the Carnegie-Mellon University xenon spatial control simulator, optimal and off-optimal control policies were tested and the capability to suppress the oscillation was demonstrated. Some of the attractive features of this suggested method are the simplicity of control policies, use of reactor output data, and the ability to initiate the control action once the oscillation is detected and to predict beforehand the outcome of the control decision, thus increasing the operator capacity to modify his decision.