ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
M. J. Lineberry
Nuclear Science and Engineering | Volume 54 | Number 2 | June 1974 | Pages 157-165
Technical Paper | doi.org/10.13182/NSE74-A23403
Articles are hosted by Taylor and Francis Online.
Localized changes in a reacting system generally lead to a recomputation of neutronic behavior. The calculation involved can be simple (first-order perturbation theory applied for small changes), or complex (a complete system-wide recomputation for large alterations). In this paper, we consider changes in an isolated portion of a system, changes that are too large for accurate prediction using first-order perturbation theory. Unless the alteration is excessively large, we should still expect the neutron distribution a few mean-free-paths from the altered region to change only slightly. We exploit the idea that localized changes can be dealt with more simply by decoupling the altered region (including a buffer zone) from the rest of the system. The spatial magnitude of the recomputation can then be reduced, with concomitant savings in effort and cost. Variational methods are used to predict the shift in k to second order. As an additional bonus, first-order estimates of the change in the flux and adjoint are calculated.