ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Mohamed Sawan, Robert W. Conn
Nuclear Science and Engineering | Volume 54 | Number 2 | June 1974 | Pages 127-142
Technical Paper | doi.org/10.13182/NSE74-A23401
Articles are hosted by Taylor and Francis Online.
Methods for the analysis of neutron pulses slowing down in heavy media are presented. The Green’s function coupling method is reviewed and the application of a prompt-jump approximation to pulses slowing down in heavy media is discussed. In this paper, these methods are applied in particular to the analysis of the lead slowing down time spectrometer (LSDTS) and the application of this device to nondestructive fissile material assay (NDA). The effects of pulse width, spectrometer size, higher order spatial modes, and lead cross-section data on the calibration curve (t versus 1/√E, the dieaway curve N(t) versus t, and the time-dependent spectrum of the LSDTS are reported. For NDA, the assay of fresh light-water reactor (LWR), plutonium recycle, and fast reactor fuel pins, as well as spent LWR fuel pins, is studied. The effects of self shielding and pulse width on the discrimination capability of the LSDTS are assessed. Two energy ranges (27.6 to 43.6 eV and 10.3 to 16.3 eV) are proposed for the assay of mixed-oxide fuel where discrimination between 235U and 239Pu is required. An error analysis of NDA with lead spectrometers that includes the calibration surfaces which occur in the assay of mixed-oxide fuel pins is given.