ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
K. E. Weise, A. Foderaro
Nuclear Science and Engineering | Volume 54 | Number 1 | May 1974 | Pages 85-93
Technical Paper | doi.org/10.13182/NSE74-A23395
Articles are hosted by Taylor and Francis Online.
Expansion coefficients for the Klein-Nishina differential cross section are presented for 17 energies in the range 0.1 to 12.0 MeV. The maximum order of these coefficients for the higher photon energies is L = 35. An interpolation procedure for the generation of expansion coefficients at additional energies is also presented. A study is made of the errors introduced in the Klein-Nishina cross section when finite order polynomial approximations are used. The error investigation includes average-weighted percent error, local percent error at θ = 0, forward-weighted percent error, and angular regions in which the expanded differential cross section is negative. The average-weighted percent error is found to be indicative of all other errors. Results indicate that cross-section errors at various energies and orders of expansion may be readily predicted. Several methods are introduced for determining a suitable degree of expansion to ensure accuracy of the finite order expansion of the Klein-Nishina differential cross section.