ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
K. E. Weise, A. Foderaro
Nuclear Science and Engineering | Volume 54 | Number 1 | May 1974 | Pages 85-93
Technical Paper | doi.org/10.13182/NSE74-A23395
Articles are hosted by Taylor and Francis Online.
Expansion coefficients for the Klein-Nishina differential cross section are presented for 17 energies in the range 0.1 to 12.0 MeV. The maximum order of these coefficients for the higher photon energies is L = 35. An interpolation procedure for the generation of expansion coefficients at additional energies is also presented. A study is made of the errors introduced in the Klein-Nishina cross section when finite order polynomial approximations are used. The error investigation includes average-weighted percent error, local percent error at θ = 0, forward-weighted percent error, and angular regions in which the expanded differential cross section is negative. The average-weighted percent error is found to be indicative of all other errors. Results indicate that cross-section errors at various energies and orders of expansion may be readily predicted. Several methods are introduced for determining a suitable degree of expansion to ensure accuracy of the finite order expansion of the Klein-Nishina differential cross section.