ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
E. Oblow, K. Kin, H. Goldstein, J. J. Wagschal
Nuclear Science and Engineering | Volume 54 | Number 1 | May 1974 | Pages 72-84
Technical Paper | doi.org/10.13182/NSE74-A23394
Articles are hosted by Taylor and Francis Online.
The sensitivity of the flux in deep-penetration problems to anisotropic scattering was studied within the framework of monoenergetic transport theory. Several parameterized, anisotropic scattering kernels were used to represent a general class of anisotropies. The representation of these kernels in Legendre polynomial series of various orders was explored to determine their effect on calculated discrete eigenspectra and infinite medium fluxes. Eigenspectra for several kernels are presented as a function of the kernel parameter. Conclusions were drawn about the order of the Legendre expansion of the kernels required for accurate deep-penetration calculations, and the possible existence of multiple diffusion decay modes in realistic problems. In general, rather low order Legendre expansions were found to be adequate for problems in which the scalar flux was the primary quantity of interest.