ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
The when, where, why, and how of RIPB design
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) held another presentation in its monthly Community of Practice (CoP) series.
Watch the full webinar here.
J. E. Morel, T. A. Wareing, R. B. Lowrie, D. K. Parsons
Nuclear Science and Engineering | Volume 144 | Number 1 | May 2003 | Pages 1-22
Technical Paper | doi.org/10.13182/NSE01-48
Articles are hosted by Taylor and Francis Online.
We analyze three ray-effect mitigation techniques in two-dimensional x-y geometry. In particular, two angular finite element methods, and the modulated P1-equivalent S2 method, are analyzed. It is found that these techniques give varying levels of ray-effect mitigation on certain traditional test problems, but all of them yield discrete-ray solutions for a line source in a void. In general, it is shown that any transport angular discretization technique that results in a hyperbolic approximation for the directional gradient operator will yield a discrete-ray solution for a line source in a void. Since the directional gradient operator is in fact hyperbolic, it is not surprising that many discretizations of the operator retain this property. For instance, our results suggest that both continuous and discontinuous angular finite element methods produce hyperbolic approximations. Our main conclusion is that the effectiveness of any hyperbolic ray-effect mitigation technique will necessarily be highly problem dependent. In particular, such techniques must fail in problems that have the most severe ray effects, i.e., those that are "similar" to a line source in a void.