ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
J. E. Morel, T. A. Wareing, R. B. Lowrie, D. K. Parsons
Nuclear Science and Engineering | Volume 144 | Number 1 | May 2003 | Pages 1-22
Technical Paper | doi.org/10.13182/NSE01-48
Articles are hosted by Taylor and Francis Online.
We analyze three ray-effect mitigation techniques in two-dimensional x-y geometry. In particular, two angular finite element methods, and the modulated P1-equivalent S2 method, are analyzed. It is found that these techniques give varying levels of ray-effect mitigation on certain traditional test problems, but all of them yield discrete-ray solutions for a line source in a void. In general, it is shown that any transport angular discretization technique that results in a hyperbolic approximation for the directional gradient operator will yield a discrete-ray solution for a line source in a void. Since the directional gradient operator is in fact hyperbolic, it is not surprising that many discretizations of the operator retain this property. For instance, our results suggest that both continuous and discontinuous angular finite element methods produce hyperbolic approximations. Our main conclusion is that the effectiveness of any hyperbolic ray-effect mitigation technique will necessarily be highly problem dependent. In particular, such techniques must fail in problems that have the most severe ray effects, i.e., those that are "similar" to a line source in a void.