ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Hans K. Fauske
Nuclear Science and Engineering | Volume 54 | Number 1 | May 1974 | Pages 10-17
Technical Paper | doi.org/10.13182/NSE74-A23388
Articles are hosted by Taylor and Francis Online.
This paper discusses some aspects of pin-to-pin failure propagation in a sodium-cooled fast-reactor subassembly resulting from (a) fission-gas release, (b) a local blockage, and (c) release of small amounts of molten fuel. The consequence of a severe flow dilution due to fission-gas release from a highly burned-up fuel pin is shown to give rise to only minor overheating because of the strong effects of fuel heat capacity, radial heat conduction, and mixing. Analysis has also shown that the occurrence of local boiling due to local blockage of detectable size appears unlikely to lead to dryout and flow instability because of the large subcooling effect in the wake downstream of the blockage. Moreover, even if a pin in a fuel assembly is assumed to fail and release small amounts of molten fuel, calculations indicate that heat losses and condensation will prevent any significant pressure generation and void propagation and therefore reduce the likelihood of rapid failure propagation.