ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
General Atomics marks completion of ITER’s superconducting fusion magnet
General Atomics last week celebrated the completion of the central solenoid modules for the ITER reactor being built in southern France. Designed to demonstrate the scientific and technological feasibility of fusion power, the ITER tokamak will be the world’s largest experimental fusion facility.
Hans K. Fauske
Nuclear Science and Engineering | Volume 54 | Number 1 | May 1974 | Pages 10-17
Technical Paper | doi.org/10.13182/NSE74-A23388
Articles are hosted by Taylor and Francis Online.
This paper discusses some aspects of pin-to-pin failure propagation in a sodium-cooled fast-reactor subassembly resulting from (a) fission-gas release, (b) a local blockage, and (c) release of small amounts of molten fuel. The consequence of a severe flow dilution due to fission-gas release from a highly burned-up fuel pin is shown to give rise to only minor overheating because of the strong effects of fuel heat capacity, radial heat conduction, and mixing. Analysis has also shown that the occurrence of local boiling due to local blockage of detectable size appears unlikely to lead to dryout and flow instability because of the large subcooling effect in the wake downstream of the blockage. Moreover, even if a pin in a fuel assembly is assumed to fail and release small amounts of molten fuel, calculations indicate that heat losses and condensation will prevent any significant pressure generation and void propagation and therefore reduce the likelihood of rapid failure propagation.