ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
C. R. Bell, N. P. Oberle, W. Rohsenow, N. Todreas, C. Tso
Nuclear Science and Engineering | Volume 53 | Number 4 | April 1974 | Pages 458-465
Technical Paper | doi.org/10.13182/NSE74-A23376
Articles are hosted by Taylor and Francis Online.
A series of studies was made of bubble nucleation by fission fragments and fast neutrons. The experimental work was conducted by a liquid suspension method in a pressure chamber designed to provide for visual determination of the onset of nucleation. The minimum superheat necessary for nucleation of visible bubbles was measured in water and propylene glycol. An analytic prediction method for the superheat threshold is presented, utilizing the “thermal spike” theory of Seitz and Rayleigh’s criteria for instability of a vapor jet in liquid. This method predicts that the important parameter a, equal to the ratio of the track length in which net energy must be deposited to the critical bubble radius, should equal 6.07. By this analysis, this value is independent of the type of thermal-spike-producing radiation, the type of fluid, and the system condition. The experimental data from this investigation and all other published data were examined to determine the applicable a values. This examination did not result in identification of a values consistent with the proposed prediction. Reasons for the deviation of the data from predictions are discussed, but the basis of the deviations cannot be resolved.