ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
J. T. Mihalczo
Nuclear Science and Engineering | Volume 53 | Number 4 | April 1974 | Pages 393-414
Technical Paper | doi.org/10.13182/NSE74-5
Articles are hosted by Taylor and Francis Online.
Cross-correlation measurements between the pulses from an ionization counter containing a 252Cf neutron source, which provided the initiators of fission chains in a neutron-multiplying assembly, and the pulses from a detector observing the particles from the fission chains leaking from the assembly were performed for unmoderated and polyethylene-moderated uranium (∼93 wt% 235U)-metal cylindrical assemblies with uranium masses varying from 12 to 160 kg and with prompt-neu-tron decay constants varying from 3 × 103 to 108 sec-1. The applicability of this randomly pulsed neutron method with 252Cf as the neutron source for the determination of the prompt-neutron decay in plutonium was investigated in experiments with unmoderated plutonium-metal assemblies with masses varying from 2.2 to 16 kg and with spontaneous fission rates from 240Pu varying from 4.5 × 104 to 8.2 × 105 fiss/sec. These assemblies included spheres and parts of spheres of plutonium with 4.5 or 20.1 at.% 240Pu. The ratio of the correlated count rate in the randomly pulsed neutron method to that in a Rossi-α method is inversely proportional to the detector efficiency and was as large as 8000 for some assemblies where both measurements were made. Thus, the randomly pulsed neutron method allowed the determination of the prompt-neutron decay without the use of a complicated pulsed-neutron source where the Rossi-α method was not practical. In assemblies for which Rossi-α measurements were also made, the prompt-neutron decay constant agreed within the precision (<1%) of the measurements with those obtained in much less time by this technique. Since the prompt-neutron decay can also be determined for plutonium-metal assemblies with ∼20 at.% 240Pu, using a californium source as small as 3000 fiss/sec, this technique can be used for the subcriticality determination for both unreflected and unmoderated uranium (93.2)- or plutonium-metal assemblies.