ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
C. O. Slater, J. C. Robinson
Nuclear Science and Engineering | Volume 53 | Number 3 | March 1974 | Pages 332-337
Technical Note | doi.org/10.13182/NSE74-A23361
Articles are hosted by Taylor and Francis Online.
The solution of a special type of deep penetration problem is obtained by coupling a deep-penetration forward calculation with a localized adjoint calculation. The system on which the calculation is performed consists of a target far removed from a radiation source. In the absence of the target, the system geometry is simple (i.e., one- or two-dimensional). The problem is to compute some effect of interest (e.g., reaction rate, flux, etc.) within the target. The problem solution consists of (a) a source-centered calculation of the radiation field with the target absent, (b) a target-centered adjoint calculation on the system with the source absent, and (c) a coupling of the above two calculations. The technique has been applied to fissile and non-fissile targets located at various distances from and having various orientations with respect to a unit isotropic point fission neutron source in an infinite air medium.