ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
ANS seeks program evaluators for ABET accreditation
When ABET visits universities for accreditation purposes, it’s crucial that a qualified nuclear expert performs the assessment of that school’s nuclear engineering, radiological engineering, and/or health physics programs. The Accreditation Policies and Procedures Committee (APPC) of the American Nuclear Society works to ensure that a program evaluator (PEV) from the Society leads these ABET assessments.
C. O. Slater, J. C. Robinson
Nuclear Science and Engineering | Volume 53 | Number 3 | March 1974 | Pages 332-337
Technical Note | doi.org/10.13182/NSE74-A23361
Articles are hosted by Taylor and Francis Online.
The solution of a special type of deep penetration problem is obtained by coupling a deep-penetration forward calculation with a localized adjoint calculation. The system on which the calculation is performed consists of a target far removed from a radiation source. In the absence of the target, the system geometry is simple (i.e., one- or two-dimensional). The problem is to compute some effect of interest (e.g., reaction rate, flux, etc.) within the target. The problem solution consists of (a) a source-centered calculation of the radiation field with the target absent, (b) a target-centered adjoint calculation on the system with the source absent, and (c) a coupling of the above two calculations. The technique has been applied to fissile and non-fissile targets located at various distances from and having various orientations with respect to a unit isotropic point fission neutron source in an infinite air medium.