ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
C. O. Slater, J. C. Robinson
Nuclear Science and Engineering | Volume 53 | Number 3 | March 1974 | Pages 332-337
Technical Note | doi.org/10.13182/NSE74-A23361
Articles are hosted by Taylor and Francis Online.
The solution of a special type of deep penetration problem is obtained by coupling a deep-penetration forward calculation with a localized adjoint calculation. The system on which the calculation is performed consists of a target far removed from a radiation source. In the absence of the target, the system geometry is simple (i.e., one- or two-dimensional). The problem is to compute some effect of interest (e.g., reaction rate, flux, etc.) within the target. The problem solution consists of (a) a source-centered calculation of the radiation field with the target absent, (b) a target-centered adjoint calculation on the system with the source absent, and (c) a coupling of the above two calculations. The technique has been applied to fissile and non-fissile targets located at various distances from and having various orientations with respect to a unit isotropic point fission neutron source in an infinite air medium.