ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
B. F. Gore, B. R. Leonard, Jr.
Nuclear Science and Engineering | Volume 53 | Number 3 | March 1974 | Pages 319-323
Technical Note | doi.org/10.13182/NSE74-A23356
Articles are hosted by Taylor and Francis Online.
Calculations have been performed which indicate the possibility of reducing below ten years the effective half-life for transmutation of massive loadings of 137Cs placed in the blanket of a controlled thermonuclear reactor (CTR). The calculations assume the cylindrical “standard blanket” geometry and neutron source (which yields a vacuum wall loading of 10 MW/m2 of 14-MeV neutrons). Significant thermal flux enhancement is obtained by (n,2n) reactions in a beryllium moderator. Gas production and induced radioactivity problems in the beryllium moderator are not much worse than in a graphite moderator. For an 80% target-zone loading of 137Cs, a transmutation rate of 290 kg per year per meter of CTR length is obtained. At this loading, the transmutation rate in roughly 1% of the length of a CTR blanket would balance the production rate in a fission reactor of the same power. Constraint of the CTR source strength to yield a wall loading of 1 MW/m2 would increase the effective half-life for 137Cs to more than 20 years.