ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Donald Bogart, Donald F. Shook, Daniel Fieno
Nuclear Science and Engineering | Volume 53 | Number 3 | March 1974 | Pages 285-303
Technical Paper | doi.org/10.13182/NSE74-A23354
Articles are hosted by Taylor and Francis Online.
Integral tests of evaluated ENDF/B high-energy cross sections have been made by comparing measured and calculated neutron leakage flux spectra from spheres of various materials. An Am-Be(α,n) source was used to provide fast neutrons at the center of the test spheres of beryllium, polyethylene, lead, niobium, molybdenum, tantalum, and tungsten. The absolute leakage flux spectra were measured in the energy range from 0.5 to 12 MeV using a calibrated NE-213 liquid scintillator neutron spectrometer. Absolute calculations of the spectra were made using Version-Ill ENDF/B cross sections and an Sn discrete-ordinates multigroup transport code., Generally excellent agreement was obtained for beryllium, polyethylene, lead, and molybdenum, and good agreement was observed for niobium although discrepancies were observed for some energy ranges. The poor comparative results obtained for tantalum and tungsten are attributed to unsatisfactory nonelastic cross sections. The experimental sphere leakage flux spectra are tabulated and serve as possible benchmarks for these elements against which reevaluated cross sections may be tested.