ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Kibog Lee, Chang Hyo Kim
Nuclear Science and Engineering | Volume 143 | Number 3 | March 2003 | Pages 268-280
Technical Paper | doi.org/10.13182/NSE03-A2335
Articles are hosted by Taylor and Francis Online.
A least-squares method is presented that is designed for an advanced core power distribution monitoring calculation of pressurized water reactors (PWRs) and its applicability to the Yonggwang Unit 3 (YGN-3) PWR in terms of computational speed and accuracy. The method here makes use of the solution to the normal equation that is derived from solving the overdetermined system of equations comprising the fixed in-core detector response equations and the nodal neutronics design equations in the least-squares principle. In order to ensure high computational accuracy and speed of power distribution monitoring calculations, the nonlinear analytical nodal method (ANM) is employed for accurate core neutronics calculations, and a preconditioned conjugate gradient normal residual iteration algorithm is adopted for speedy solution to the normal equation. The applicability of the least-squares method for the core power distribution monitoring of the YGN-3 PWR is examined by pure numerical experiments in which the reference three-dimensional (3-D) power distribution is calculated by the 36 node-per-fuel-assembly (N/A) nonlinear ANM. Simulated detector signals are derived from the reference power distribution to establish detector response equations. The 3-D monitored core power distribution is obtained from the 1 or 4 N/A solution to the normal equation and compared with the reference power distribution to determine the prediction accuracy. It is shown that the least-squares method can predict a very accurate 3-D power distribution within the acceptable computation time of a few seconds on a 733-MHz personal computer.