ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Tatsuo Tabata, Rinsuke Ito
Nuclear Science and Engineering | Volume 53 | Number 2 | February 1974 | Pages 226-239
Technical Paper | doi.org/10.13182/NSE74-A23346
Articles are hosted by Taylor and Francis Online.
An algorithm to calculate the energy deposition distribution produced by monoenergetic fast electrons normally incident on the semi-infinite absorber is given. While the algorithm is based on an elementary relation that is also a basis of similar work by Kobetich and Katz, higher accuracy has been attained and the region of validity has been extended by using better approximations and new expressions for its evaluation. Empirical equations recently developed for the extrapolated range and the backscattering of electrons have been utilized, and the effect of bremsstrahlung production has been taken into account by the use of a modified Koch-Motz equation. Expressions for three adjustable parameters introduced into the algorithm have been determined by least-squares fit to published experimental and Monte Carlo results of the energy deposition distribution. The algorithm obtained is valid for incident energies from ∼0.1 to 20 MeV and for atomic numbers of the absorber from ∼5.3 (the effective atomic number for a light compound) to 82.