ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
G. L. Simmons, C. Eisenhauer
Nuclear Science and Engineering | Volume 53 | Number 2 | February 1974 | Pages 197-219
Technical Paper | doi.org/10.13182/NSE74-A23344
Articles are hosted by Taylor and Francis Online.
The moments method is applied to the problem of calculating neutron distributions in an infinite medium. Several comparisons are given of these results with similar data calculated by the discrete ordinates method. New calculations are presented on the distribution of doses from neutrons, originating in a plane-slant fission source and incident, at various angles, on concrete utilized in radiation measurements at the Tower Shielding Facility of the Oak Ridge National Laboratory (TSF concrete). For a given set of neutron cross sections, these results give reliable estimates of the dose distribution at deep penetrations, i.e., attenuation of six orders of magnitude or more. Functional representations of the distributions are included in order to facilitate the use of the data in shield design calculations.