ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
ANS seeks program evaluators for ABET accreditation
When ABET visits universities for accreditation purposes, it’s crucial that a qualified nuclear expert performs the assessment of that school’s nuclear engineering, radiological engineering, and/or health physics programs. The Accreditation Policies and Procedures Committee (APPC) of the American Nuclear Society works to ensure that a program evaluator (PEV) from the Society leads these ABET assessments.
G. L. Simmons, C. Eisenhauer
Nuclear Science and Engineering | Volume 53 | Number 2 | February 1974 | Pages 197-219
Technical Paper | doi.org/10.13182/NSE74-A23344
Articles are hosted by Taylor and Francis Online.
The moments method is applied to the problem of calculating neutron distributions in an infinite medium. Several comparisons are given of these results with similar data calculated by the discrete ordinates method. New calculations are presented on the distribution of doses from neutrons, originating in a plane-slant fission source and incident, at various angles, on concrete utilized in radiation measurements at the Tower Shielding Facility of the Oak Ridge National Laboratory (TSF concrete). For a given set of neutron cross sections, these results give reliable estimates of the dose distribution at deep penetrations, i.e., attenuation of six orders of magnitude or more. Functional representations of the distributions are included in order to facilitate the use of the data in shield design calculations.