ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Michael J. Lineberry, Noel Corngold
Nuclear Science and Engineering | Volume 53 | Number 2 | February 1974 | Pages 153-161
Technical Paper | doi.org/10.13182/NSE74-A23341
Articles are hosted by Taylor and Francis Online.
The inelastic scattering of neutrons by nuclei has been treated historically as a stepchild of elastic scattering. Few analytical studies have been performed which focus attention on inelastic scattering as a primary energy transfer mechanism. In this paper, we consider neutrons slowing down in the presence of inelastic scatterers. We take the host nuclei to be very heavy, so that in an inelastic collision a precise amount of energy is lost in the laboratory system. The slowing-down equation we obtain in the steady state has the form of a differential difference equation. We study its solutions in a variety of cases (cross-section models) and compare them with those obtained from conventional approaches. The techniques and results presented may be useful in evaluating complicated algorithms for the machine solution of problems in fast-reactor physics.