ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
Michael J. Lineberry, Noel Corngold
Nuclear Science and Engineering | Volume 53 | Number 2 | February 1974 | Pages 153-161
Technical Paper | doi.org/10.13182/NSE74-A23341
Articles are hosted by Taylor and Francis Online.
The inelastic scattering of neutrons by nuclei has been treated historically as a stepchild of elastic scattering. Few analytical studies have been performed which focus attention on inelastic scattering as a primary energy transfer mechanism. In this paper, we consider neutrons slowing down in the presence of inelastic scatterers. We take the host nuclei to be very heavy, so that in an inelastic collision a precise amount of energy is lost in the laboratory system. The slowing-down equation we obtain in the steady state has the form of a differential difference equation. We study its solutions in a variety of cases (cross-section models) and compare them with those obtained from conventional approaches. The techniques and results presented may be useful in evaluating complicated algorithms for the machine solution of problems in fast-reactor physics.