ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Michael J. Lineberry, Noel Corngold
Nuclear Science and Engineering | Volume 53 | Number 2 | February 1974 | Pages 153-161
Technical Paper | doi.org/10.13182/NSE74-A23341
Articles are hosted by Taylor and Francis Online.
The inelastic scattering of neutrons by nuclei has been treated historically as a stepchild of elastic scattering. Few analytical studies have been performed which focus attention on inelastic scattering as a primary energy transfer mechanism. In this paper, we consider neutrons slowing down in the presence of inelastic scatterers. We take the host nuclei to be very heavy, so that in an inelastic collision a precise amount of energy is lost in the laboratory system. The slowing-down equation we obtain in the steady state has the form of a differential difference equation. We study its solutions in a variety of cases (cross-section models) and compare them with those obtained from conventional approaches. The techniques and results presented may be useful in evaluating complicated algorithms for the machine solution of problems in fast-reactor physics.